Single-molecule spectroscopy using nanoporous membranes.
نویسندگان
چکیده
We describe a novel approach for optically detecting DNA translocation events through an array of solid-state nanopores that potentially allows for ultra high-throughput, parallel detection at the single-molecule level. The approach functions by electrokinetically driving DNA strands through sub micrometer-sized holes on an aluminum/silicon nitride membrane. During the translocation process, the molecules are confined to the walls of the nanofluidic channels, allowing 100% detection efficiency. Importantly, the opaque aluminum layer acts as an optical barrier between the illuminated region and the analyte reservoir. In these conditions, high-contrast imaging of single-molecule events can be performed. To demonstrate the efficiency of the approach, a 10 pM fluorescently labeled lambda-DNA solution was used as a model system to detect simultaneous translocation events using electron multiplying CCD imaging. Single-pore translocation events are also successfully detected using single-point confocal spectroscopy.
منابع مشابه
Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures
Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to tr...
متن کاملSpecificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy
In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides c...
متن کاملPropylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets
Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy...
متن کاملUltra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.
Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA dow...
متن کاملTransport and functional behaviour of poly(ethylene glycol)-modified nanoporous alumina membranes
The development of hybrid organic–inorganic membranes with a low propensity for protein adsorption and highly uniform nanometre size pores is described. Poly(ethylene glycol) (PEG) monolayers were grafted to nanoporous alumina membranes using covalent silane and physical adsorption poly(ethyleneimine) (PEI) immobilization chemistries. X-ray photoelectron spectroscopy (XPS) and electron microsco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2007